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We comment on a nonstandard statistical treatment of 
time-series data first published by Breton et al. (2006) in 
Limnology and Oceanography and, more recently, used by 
G I i bert (201 0) in Reviews in FisheriesScience. In both papers, 
the authors make strong inferences about the underlying 
causes of population variability based on correlations 
between cumulative sum (CUSU M) transformations of 
organism abundances and environmental variables. Breton 
et al. (2006) reported correlations between CUSU M-trans­
formed values of diatom biomass in Belgian coastal waters 
and the North Atlantic Oscillation, and between meteoro­
logical and hydrological variables. Each correlation of 
C USU M -transformed variables was judged to be statistically 
significant. On the basis of these correlations, Breton et al. 
(2006) developed "the first evidence of synergy between 
climate and human-induced river-based nitrate inputs with 
respect to their effects on the magn itudeof spring Phaeocystis 
colony blooms and their dominance over diatoms." 

Using the same approach, Glibert (2010) reported corre­
lations between C USU M -transformed abundances of organ­
isms occupying many trophic levels and a range of 
environmental variables in the San Francisco Estuary, 
California. These correlations were reported to be statistically 
significant, and on this basis Glibert (2010) concluded that 
recent large population declines of diatoms, copepods, and 
several species of fish were responses to a single factor­
increased ammonium inputs from a municipal wastewater 
treatment plant. The study by Bretonet al. (2006) is consistent 
with a large body of research demonstrating the importance 
ofclimateand human activity on phytoplankton communities 
in Belgian coastal waters (Lancelot et al. 2007). However, 
Glibert's (2010) study piqued our curiosity about correlations 
between CUSU M-transformed variables because it contra­
dicts the overwhelming weight of evidence that popula­
tion collapses of native fish (Sommer et al. 2007) and 
their supporting food webs in the San Francisco Estuary 
are responses to multiple stressors, including landscape 
change, water diversions, introductions of exotic species, 
and changing turbidity(Bennettand Moyie 1996; Kimmerer 
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et al. 2005; Cloern 2007; Jassby 2008; Mac Nally et al. 201 0; 
Thomson et al. 2010). We ask here how CUSU M transfor­
mation leads to inferences about such cause-effect relation­
ships when visual inspection of the data series (e.g., Fig. 1) 
shows no association between wastewater ammonium and fish 
abundance. 

We emphasize an important distinction between the 
CUSU M chart and CUSU M transformation. The CUSU M 
chart is a well-established technique of quality assurance for 
industrial processes (Page 1954). The method involves 
keeping a running summation of the deviations of the 
quality of the quantity of interest (e.g., concentration of an 
industrial chemical) based on a sample of size n. If the 
quantity suddenly jumps, or gradually drifts from the 
specified tolerance, then a warning is raised and the process 
is stopped. The CUSU M chart has been used as a valuable 
off-line method in aquatic sciences to detect and resolve 
climatic (Breaker 2007) and ecological (Bricei'D and Boyer 
2010) regime shifts, as well as departures of water-quality 
indicatorsfromcomplianceconditions(Mac Nally and Hart 
1997). In contrast, there appears to be no history for 
regression (or correlation) analyses on CUSU M-trans­
formed variables prior to its use by Breton et al. (2006), 
and we have found no theoretical development or justifica­
tion for the approach. We prove here that the CUSU M 
transformation, as used by Breton et al. (2006) and Glibert 
(2010), violates the assumptions underlying regression 
techniques. As a result, high correlations may appear where 
none are present in the untransformed data (e.g., Fig. 1 ). 
Regression analysis on CUSU M-transformed variables is, 
therefore, not a sound basis for making inferences about the 
drivers of ecological variability measured in monitoring 
programs. This issue is sufficiently important to warrant 
exploration of the approach, which we present here. 

The CUSU M function 

The CUSU M function is a mathematical discrete operator 
that transforms an input time series (xt) to an output time 
series(yt) representing the running total of the input. 
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Fig. 1. Annual (A) abundance index of delta smelt (Hypomesus transpacificus) in the San Francisco Estuary and (B) wastewater 
loadings of ammonium to the Sacramento River, 1985--2005. Treatment plant data were obtained from the Sacramento Regional County 
Sanitation District (S. Nebozuk pers. comm., 28 July 2006). Monthly loading was calculated from discharge-weighted ammonium 
concentrations using the methods described by Jassby and Van Nieuwenhuyse (2005). Delta-smelt abundance data were obtained from 
the California Department of Fish and Game (http://www.dfg.ca.gov/delta/data/townet/indices.asp!Species5 3). 
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The CUSU M function often is applied to time series of 
standardized residuals to detect changes in the mean of the 
time series (Zeileiset al. 2003; Breaker 2007). The CUSU M 
function changes the statistical properties of the input time 
series. If the standardized input time series consists of 
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This means that the variance of the CUSU M-transformed 
variables and the autocovariance between two consecutive 
observations of the C USU M -transformed variables both grow 
linearly with time and, consequently, the autocorrelation of 
the CUSUM-transformed variables quickly approaches 1. 

Two key assumptions behind tests derived from standard 
regression analyses are that the observations comprising 
the sample are independently and identically distributed 
(II D). As shown above, both assumptions are violated 
when a random input variable is CUSU M-transformed 
because: the variance is not constant, so the transformed 
observations are not identically distributed; and the 
transformed observations are autocorrelated and therefore 
not independent of one another. Thus, applying statistical 
regression techniques to CUSU M-transformed time series 
violates the two most crucial assumptions for these tests. 

CUSU M transformation inflates correlation 

The CUSU M of a purely random process is a pure 

Cm1;¥t,Yt { n- Cov xi - (t { 1) I s2 041:> random walk, an example of a difference-stationary 
i-1 i-1 variable (because its first difference is stationary). Pfaff 

(2006) described the difficulty of using difference-stationary 
variables in regression and correlation: "In this case, the 

Cor~1 ,y1 { n- p &1llfftrm¥iitriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffillflmffifflffillifflftPften highly correlated and the t and F 
V;¥n I V.!¥t { 1l statistics are distorted such that the null hypothesis is 

2 09:> rejected too often for a given critical value; hence the risk 
- p ffiJi\tfrt1~ik~iffiffiffi#ifijffi~fiffilfifti(HflilllfiflllillifilfMimllmfflffrnmifffffiffir 'nonsense regression' exists. 

t 1 s2 
1 (t { 1) 1 s2 t I (t { 1) Furthermore, such regressions are characterized by a high 
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Fig. 2. (A) Frequency distribution of correlation coefficients for two independent random 
normal series of length 30 (n 5 100,000). (B) Same as A after the samples are CUSU M­
transformed. (C) Same as B, but with first-order serial correlation of 0.5 introduced into the 
otherwise random normal processes. Vertical dashed lines, 95% Cl. 

R2." RegrESSions involving cumulative variables such as 
those produced by CUSU M transformation are classic 
examples of spurious regrESSion and a well-known problem 
in econometrics (Hendry 1980). 

To illustrate the problem more concretely, we conducted 
the following Monte Carlo experiment. We first generated 
two independent, standardized (mean 0, standard deviation 
1 ), normal random processes of length 30, about the length 
of many annualized time series available from monitoring 
data (e.g., those analyzed by Glibert 2010). We then 
calculated the Pearson correlation between these two series 
and also between their CUSU M-transformed values. We 
repeated the proCESS 100,000 times, yielding two distribu­
tions of correlation coefficients from which we generated 
95% confidence intervals(Cis). The distribution of CUSU M 
correlations is very different from the distribution of 
correlations of the untransformed variables (Fig. 2). The 
95% C I is ( 2 0.36, 0.36) for the original variables (Fig. 2A), 
but ( 2 0. 71, 0. 71) for the C USU M -transformed variables 
(Fig. 28). Thus, correlations must exceed 0.71 (instead of 
0.36) for CUSU M-transformed variables to be considered 
significant at the p , 0.05 levels. This implies that the 
CUSU M transformation increases the probability of making 

a Type I error (incorrectly rejecting a null hypothesis of no 
correlation) from 5% to 42% when Pearson's statistics are 
applied. Therefore, on this basis alone, the p-values for 
correlations of CUSU M-transformed variables reported by 
Breton et al. (2006) and Glibert (2010) are incorrect. 

The above experiment was based on independent 
random processes. Water resources data, however, com­
monly exhibit serial correlation (Helsel and Hirsch 2002). 
The introduction of serial correlation accentuates the 
problem by broadening the distribution of correlation 
coefficients even further than in the example above. To 
measure this effect, we repeated the simulations after 
introducing varying amounts of first-order serial correla­
tion (r1, r2) into the paired series that otherwise represented 
random normal processes (using the arima.sim function of 
R; R Development Core Team 2010). This second 
experiment shows how the 95% Cis for the correlations 
broaden in proportion to the strength of serial correlation 
(Table 1; Fig. 2C). The presence of serial correlation thus 
increases the probability of making a Type I error further 
(53% when r1 5 r2 5 0.5), making any conclusions from 
such correlations correspondingly lESS reliable. Even if a 
significance level of p , 0.0001 were used, the probability 
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Table 1. Upper limits of the 95% Cis for correlation between 
two untransformed and CUSU M-transformed random variables 
with different combinations of serial correlation coefficients, r1 
and r2. 

CUSUM-
r1 r2 U ntransformed transformed 

0.0 0.0 0.36 0.71 
0.1 0.1 0.36 0.73 
0.1 0.5 0.38 0.77 
0.1 0.9 0.39 0.82 
0.5 0.5 0.44 0.81 
0.5 0.9 0.51 0.86 
0.9 0.9 0.71 0.92 

of making a Type I error (19% when r1 5 r2 5 0.5) would 
still be much greater than 5%. 

We showed that two CUSU M-transformed variables 
often have an apparent statistically significant correlation 
even if none exists between the original untransformed 
series. Moreover, even if a statistically significant relation­
ship could be established between CUSU M-transformed 
variables, there is no proven basis for inferring relation­
ships between the original variables. Given these difficul­
ties, we wonder what purpose is served by CUSU M 
transformation for exploring relationships between two 
variables. As a real example, Glibert (2010) inferred a 
strong negative association between delta smelt abundance 
and wastewater ammonium from regression of CUSU M­
transformed time series. However, the Pearson correlation 
(r 5 20.096) between the time series (Fig. 1) is not 
significant, even under the naive II D assumptions (p 5 
0.68). In short, correlations between CUSU M-transformed 
variables should not be used as a substitute for analysis of 
the original untransformed variables. 
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